
26 CROSSTALK The Journal of Defense Software Engineering October 1998

Systems engineering requires
that developers work at the sys-
tem level, which means they

must understand the requirements of
and interaction between hardware,
software, and end users. End users,
who usually have little experience with
systems development, need a detailed
understanding of how they will be
required to jointly operate with soft-
ware and hardware modules to com-
plete their missions; without this un-
derstanding, they may not be able to
provide the quality of input needed
during the design process.

As a result, systems engineers’ prob-
lems largely concern barriers to under-
standing, as they must design and de-
scribe complex systems in a way that
can be readily understood by software
designers, hardware designers, and end
users. To create a system description
that is correct and can be analyzed, it
helps if the description is both under-
standable and reasonably formal.

Evolution of Odel
The Ada programming language was
introduced to the Swedish defense
community about 11 years ago. To
popularize Ada, the Swedish govern-
ment contracted with Swedish contrac-
tor Sypro to create a simple Ada-based
pseudo language to introduce Ada’s
semantics and syntax. The language,
named “Adel” (Ada-based Design Lan-
guage), was designed with simplifica-
tions of Ada, including the following:

• Tasking was simplified into a “con-
cur” construct where a set of con-
current procedures are listed be-
tween the new reserved words
“concur” and “end concur.”

• Type and interface management
was informal.

• The control structures from Ada
were retained with some minor
simplifications.
To support the language, an ana-

lyzer named Adela (Adel Analyzer) was
developed to help write correct Adel.
The Adel language was tried in several
projects with varying degrees of suc-
cess. Some experiences were
• People with a programming back-

ground could learn Adel in roughly
two hours.

• Adel could be used not only for
software design but also for logic
design of hardware and operator
parts of systems.

• The informal management of inter-
faces between objects (packages)
made it necessary to perform
manual checks on system descrip-
tion consistency.

• End users could learn to under-
stand Adel descriptions if the
description was given line by line.

• In software engineering, Adel
helped sort out problems before
programming commenced.

Development of Odel
Experiences with Adel were encourag-
ing, which led to the vision of a sys-

tem design language based on Ada 95.
Although the new language was to
provide system descriptions that could
be used for programs written in any
language, Ada was a logical foundation
because it gives developers the ability
to split a large system into packages,
each of which contain a manageable
and understandable part of the system
with clear interfaces.

The idea was to create a language
that was still simple enough to be
taught to people with a programming
background in a couple of hours and
that was explainable to end users. At
the same time, the language needed to
be sufficiently formal that hardware
engineers, software developers, and
end users could check for consistency
problems among the descriptions.

The resulting language, Odel, was
developed by the private company
Romet as part of the “complex sys-
tems” program sponsored by the
Swedish Authority for Industrial De-
velopment. Romet retained ownership
of Odel but decided to make the lan-
guage publicly available without cost.
Although Odel is derived from Ada
95, some constructs are different, and
you cannot use Ada 95 tools to analyze
Odel descriptions.

Benefits of the Odel Language
Detailed system descriptions written in
the Odel can be understood not only by
users and developers but also by tools
that support the Odel language. This

Overcoming System Design Challenges
The Creation of a System Description Language

Ingmar Ögren
Tofs AB

It is difficult for system developers to create designs that represent the system in a manner that
is understandable, detailed, and useful enough to everyone who must give input to the design.
Yet, no matter how well this obstacle is dealt with, it is still difficult to find and fix design flaws
in written system descriptions. This article describes Odel (Object Design Language), a read-
able, “executable” system description language that can be mastered by hardware and software
developers in a couple of hours and that can easily be explained to end users. Not only does
Odel increase understanding among all players but also combined hardware, software, and
user descriptions written in Odel can be electronically analyzed and debugged to allow design-
ers to spot incompleteness, flaws, and inconsistencies long before the design is implemented.

Emerging Ideas

CROSSTALK The Journal of Defense Software Engineering 27October 1998

gives system designers the ability to
“execute” the system description line by
line—identifying many potential prob-
lems long before the system is imple-
mented. Following are some of the
tasks in which Odel can assist.
• Reveal incompleteness and incon-

sistencies in the understanding of a
system that may be hidden in natu-
ral language design descriptions.

• Model a system so that you can
estimate its feasibility.

• Use operator role descriptions as a
base for writing operator manuals
and for analyzing possible operator
behavior, including erroneous be-
havior.

• Check a design for syntax and con-
sistency errors and correct them.

• Find design contradictions.
• Find undefined states in a design.
• Investigate a system’s behavior

under load without implementation
of the system, which requires tim-
ing information for actions and
capacity measurement for support-
ing hardware objects. This is best
done with simulation first.

• Find out how system behavior
depends on the operator’s actions
within the relevant part of the
operator’s behavior space.

• Create a basis to prepare tests for a
system implementation, based on
design understanding, possible
inputs, and expected outputs.

• Create Fault Trees and Failure
Mode Effects Trees for analysis of
critical systems based on actions in
Odel descriptions.

• Create a basis for definition of
simulations.

• Compare software and hardware
design descriptions with Ada 95 [1]
VHDL (VHSIC Hardware De-
scription Language [2]), and C++
(or Java) code. (This is a long-term
objective for Odel, as it requires
experience before implementation
in a tool.)

• Transform Ada 95 source code
into a design language description
(long-term objective, probably
requiring Ada Semantic Interface
Specification [3]).

• Create a formal basis for building
software tools for work with Odel
descriptions.

• Teach Odel to software developers
in a couple of hours.

• Explain Odel descriptions to end
users, with full understanding.
Descriptions of operator’s roles

and hardware are special exceptions to
the above, as they are not intended to
be developed into code except for
cases in which you want software to
model hardware or operator behavior.

Overview of Odel

Overall Structure
Figures 1-3 show the overall structure
of an Odel description. The central
element in an Odel description is the
action. The word “action” was chosen
based on an idea from Professor
Vitalis Sh Kaufman from Helsingfors,
Finland, and it does not mean any-
thing in the Ada programming lan-
guage. The “action” represents Ada’s
procedures, functions, and tasks.

Figure 1 shows how an action
contains interfaces and behavior and
how it is supported by type definitions
and by definitions of parameters, local
variables, and messages.

Administratively, actions are
grouped into the following objects
(Figure 2).
• Ordinary objects – contain a num-

ber of actions to be kept together
for design and review.

• Configuration Item object (CI
object) – encompasses the amount
of work suited for a small group
during a limited time.

• Project object – encompasses the
complete work within a develop-
ment project.

Presuppositions for Odel
A number of presuppositions were
formed as a basis for Odel:
• Any information system is consti-

tuted of one or more processes,
which can be active in parallel
(concurrently).

• Any process can be defined as an
action, which has

• An offered interface (action call).

• A behavior, defined as a se-
quence of statements, that may
include sending and receiving
messages.

• A required interface toward
other actions (optional).

• Information system actions can be
implemented as

• operator actions.
• software actions.
• hardware actions.

• Each information system aims at
fulfillment of one or more mis-
sions, with the relevant actions
defined for each mission.

• Each mission is completed through
one or more actions.

Figure 1. Overall Odel structure.

Figure 2. Action and object hierarchy.

Overcoming System Design Challenges: The Creation of a System Description Language

Figure 3. Object description.

28 CROSSTALK The Journal of Defense Software Engineering October 1998

Emerging Ideas

• Ada 95 qualifies as a formal base
for part of the definition of the
Odel language.

The Object with Its Interfaces
An ordinary Odel object is basically a
container of actions (Figure 3):

Offered action – an action that can
be invoked by an action outside the
current object. “Outside” then in-
cludes other objects in the current CI
and any object in its environment. At
least one offered action is mandatory,
as each object must have an offered
interface. Parameters are defined in
connection with actions.

Required action(s) – an action that
the current object requires from ob-
jects outside the current object to com-
plete its own actions. The required
action(s) are optional, as ”bottom-level”
objects will not have any required inter-
face. However, this entry is mandatory
for all objects that have support ob-
jects. The required action names are
qualified in action calls in two forms:
• CI_name.Object_name.Action_name (pa-

rameters), for actions defined in an
object in a foreign CI. Objects in
foreign CIs are called “attached
objects.”

• Object_name.Action_name (parameters),
for actions defined in another ob-
ject in the same CI as the current
object. Objects within the current
CI are called “contained objects.”
Internal actions – are only invoked

from other actions within the current
object.

The textual form for an object is
object current_object_name is
required actions : list of qualified names of
actions
offered action : list of names of actions in
current object with visibility = offered
internal actions : list of names of actions in
current object with visibility = internal list of
action descriptions
end current_object_name

The Odel Definition
Because Odel is based on Ada 95, it
was defined through copying and ref-
erencing the Ada 95 Language Refer-
ence Manual [1]. The main part of the
language is merely a subset of Ada 95.

In real-time systems, you some-
times need to wait for a new message
and then receive the new message.
This can be expressed with a com-
ment. Another, more formal possibil-
ity is to construct a loop and compare
received messages until a new message
is found. This possibility is, however,
not normally recommended, as the
loop may become obscure and unnec-
essarily prescribe a detailed program-
ming solution.

Tofs, the Odel-Based Tool
The Odel language was used as a foun-
dation to create a system engineering
tool, Tofs (TOol For Systems). Figure
4 shows Tofs’ main screen with a “tree
graph” window. This main screen
allows you to work with the system
structure and allows you to reach dif-
ferent parts of the Tofs toolkit.

To work with Odel, you select an
action and open an editing window.
After you have written some Odel, you
can invoke the analyzer, which will
then analyze the Odel description and
then show any error messages by high-
lighting the lines where errors were
found.

Figure 5 shows the Odel editing
window, with a message from the ana-
lyzer. Tofs further includes an “execu-

Figure 4. Tofs main screen with automobile example.

However, some extensions were
needed to describe parallel processes.
An example from the Odel definition
is shown for the “Send” and “Receive”
statements:

Send Statements
A send statement assigns a value to a
message and makes it globally readable.
send_statement ::= send message_name
(expression)

The message denoted message_name
must be declared, and the expression
must be of the type of the message.
Example:
In action header:

Messages: notification : string
In Odel description:

send notification (�OK�)

Receive Statements
A receive statement retrieves a value
from a message sent by another (or
possibly the same) action and assigns
it to a variable, an out parameter or an
in_out parameter.
receive_statement ::=
receive message_name (variable | parameter)

The message denoted message_name
must be declared. The type of the
variable or parameter must be the type
of the message. For example:
receive notification (answer).

CROSSTALK The Journal of Defense Software Engineering 29October 1998

tor” (not shown in the figures), which
is basically an Odel-level debugger,
which shows concurrent actions in
multiple windows in parallel.

Use of Odel and Tofs
With Odel and Tofs, the basic seman-
tics and parts of the syntax of Ada 95
can be applied not only to software but
also to complex concurrent systems
where operators jointly operate with
software and hardware modules to
complete missions. Odel and Tofs are
intended to support a system engineer
in tasks such as
• Analyzing a system in its environ-

ment, with clarification of how the
system communicates with and
represents its environment.

• Designing a system as a set of
objects that depend on each other
through interfaces.

• Analyzing requirements and dis-
tributing fulfillment requirements
to objects with listing of require-
ments with tracing.

• Managing problems that surface
during system development.

• Analyzing a design concerning
syntactic correctness and consis-
tency.

• Reviewing a system, using the Odel
“executor.”

• Documenting a system, according
to relevant standards, such as the
EIA/IEEE 12207.

• Reengineering code (manually) into
an Odel system description.

• Analyzing a system’s dependability,
using fault tree analysis and failure
mode affects analysis.
Although Odel descriptions look

similar to Ada code, they are not code
but are a detailed and formal descrip-
tion of a system, including its software
parts. To go from an Odel description
to code, you can copy the Odel text
into a source code editor and mark
the text as comments. The Odel de-
scription will then be a detailed speci-
fication for the code to be written (in
Ada or some other language).

Automatic generation of code has
not been attempted because I believe
that programming is professional
work, which is best done by a compe-

ing of a tactical aircraft simulator, and
others. Following are some experi-
ences from these applications.
• Some end users readily accept and

understand the formality of Odel
without additional explanation
from system developers, while the
reaction of others is “I do not read
code.”

• Using the Odel language without
an automatic analyzer requires
much tedious work for the review-
ers. Tofs eliminates much of this
type of work.

• Odel is useful when you want to
document existing software, for
example, for reengineering from
FORTRAN into Ada.

• Inclusion of “mission objects” in
the system structure helps to keep
the priorities right and to under-
stand how different parts of the
system contribute to completion of
missions.

• Inclusion of operator roles as ob-
jects in the system structure helps
in optimizing human-machine
interfaces.

Conclusion
Odel has created the ability to struc-
ture complex systems as a set of ob-

Figure 5. Odel editing window with error message.

tent programmer who understands
what is required.

Ownership, Availability, and
Experience
The Tofs toolkit was developed by the
Tofs AB company. The toolkit is avail-
able in two versions:
• A free version, with full functional-

ity but limited capacity, intended
for systems engineering education
and for evaluation. It can be down-
loaded from http://
www.toolforsystems.com

• A commercial version.
Courses in systems engineering

with Tofs are held regularly in Sweden.
Course length is three days. Some
courses have also been held in the
United States, and courses can be
arranged on request by Abelia in
Fairfax, Va. [4]. Some educational
information also is available for down-
load from http://
www.toolforsystems.com

As the work with Ada-based sys-
tems engineering has been going on
for more than 10 years, some experi-
ence has been gathered from various
projects such as automobile industrial
systems, military ship modeling (sub-
marine), development of an Army
radio communication system, structur-

Overcoming System Design Challenges: The Creation of a System Description Language

30 CROSSTALK The Journal of Defense Software Engineering October 1998

jects, connected through their offered
and required interfaces.

Experience from multiple projects
shows that work with complex systems
should be assisted by software tools,
because the complexity results in more
information than can be managed
manually. Some 10 years of experience
of Ada-based systems engineering has
been used to implement the Tofs
toolkit. The result is a comparatively
compact tool to assist systems engi-
neering tasks from requirements man-
agement to documentation.

The main objective for Odel was to
create a language that qualifies as for-
mal while being understood by both
end users and developers. This objec-
tive seems to have been reached, but

more experience is needed to attain
the full potential of the language. u

About the Author
Ingmar Ögren is president of Tofs AB in
Sweden. His systems design experience
began at the Royal University of Technol-
ogy, Electronics Division, where he partici-
pated in pioneering military aircraft simula-
tor systems. He later was active in the
development of data transmission elements
for air defense systems and the manage-
ment of a multi-industry, multiprocessor
airborne computer system. As a private
company owner, he worked on civilian
systems and helped introduce Ada to the
Swedish defense community and helped
use Ada to analyze, design, and document
systems in general. This work led to his

development of the O4S™ method used in
large systems such as submarines and air-
craft. He and his wife Anna used their O4S
experience as a foundation for Tofs.

E-mail: iog@toolforsystems.com
Internet: http://www.toolforsystems.com

References
1. Ada 95 Reference Manual, ISO/IEC

8652, 1995.
2. IEEE Standard VHDL Language Refer-

ence Manual, ANSI/IEEE STD 1076-
1993.

3. Information about ASIS is available from
the URL http://www.ci.pwr.wroc.pl/cgi-
bin/plcon/winHiso/www.acm.org/
sigada/wg/asiswg.

4. Abelia is at http://www.abelia.com.

Emerging Ideas

It’s not too early to start making plans to attend STC ’99. Judging
from past conference attendance, the sooner you act the better.
Contact us for the latest information on conference registration,
exhibits, housing, and activities in the host city. If you have never
attended—or if you want to know how this year’s event will be differ-
ent—we’ll give you an update on speakers, networking opportunities,
general sessions, tutorials, presentation tracks, and exhibitors.

The United States Air Force, Army, Navy, Marine Corps, and
the Defense Information Systems Agency have again joined forces to

co-sponsor STC ’99, the premier Software Technology Conference in
the Department of Defense. Utah State University Extension is the
conference non-federal co-sponsor. We anticipate over 3,500 partici-
pants from the services, other government agencies, contractors,
industry, and academia.

Registration for exhibit space opened Aug. 3, 1998. Reservations
for exhibit space are processed on a first-come, first-served basis, by
either mail or fax. Many exhibitors have already made reservations,
and booth space is filling fast. New exhibitors will find background
information on the Software Technology Conference, its history, and
attendance statistics helpful in planning for the conference. This
information, along with an updated exhibit hall layout, including assign-
ments and organizations registered to date, will be maintained on the
Internet. You can access this information at http://www.stc-online.org
or from our STC ’99 fax-on-demand line, 435-797-2358, item 303.

It is recommended that you make reservations for your hotel
guest room as soon as possible. For your convenience, a Housing
Reservation Form has been included in the center insert of this issue
of CROSSTALK. In addition to the housing form, a listing of the potential
hotels is available at our Web site and from our fax-on-demand line,
435-797-2358, item 200. Although this year more government- rate
rooms have been made available in the immediate vicinity of the
Convention Center, they will fill up quickly, so book early.

For more information, please visit our Web site at http://www.stc-
online.org, call the management team at 801-777-7411, DSN 777-
7411, or send an E-mail to Dana Dovenbarger or Lynne Wade at
wadel@software.hill.af.mil. We look forward to seeing you next May.

Mark Your Calendars Now for the Eleventh Annual
Software Technology Conference

May 2–6, 1999, Salt Lake City, Utah

